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Abstract-Natural convection in a heated vertical concentric annulus is studied. A constant heat-flux is 
applied to the inner cylinder and the outer cylinder is insulated. Under these conditions, the mean 
temperature of the fluid increases linearly while, at the same time. heat diffuses from the heated surface into 
the fluid, resulting in a temperature distribution on the cross-section. Subtracting this steadily increasing 
temperature from the total temperature results in a steady temperature stratification on the cross-section 
which drives fluid motion. The mathematical form of the scaled problem is shown to be identical to that 
of a fluid in an annulus with uniformly distributed heat sources, with the inner cylinder maintained at 
constant temperature and the outer cylinder insulated. At low heat addition rates, the fluid motion is 
steady and parallel, and heal is transferred by conduction between the fluid layers. As the rate of heating 
increases, the Row becomes unstable and recirculating eddies appear. which transfer heat by convection. 
The onset of convection is determined by linear-instability analysis of the basic-state. The results dem- 
onstrate that when the Prandtl number is small, the dominant instability obtained energy primarily from 
shear production. On the other hand, when the Prandtl number is large. an instability that obtains kinetic 
energy from buoyant production is pre-eminent. Weakly nonlinear instability theory is used to analyze 

finite-amplitude elfects. The results show that both types of linear instabilities are supercritical. 

1. INTRODUCTION 

INSTABILITY of natural convection in a tall vertical 
channel or annulus has been extensively studied due 
to its relevance to practical applications, as well as 
being a model problem for thermally driven flow 
instabilities [l-7]. The flow can be shown to depend 
on the Grashof number (Gr), the Prandtl number (Pr) 
and the geometry of the enclosure. In a tall vertical 
slot, when the flow is assumed to be parallel, the 
resulting velocity profile is cubic, with the fluid near 
the warmer wall moving upward and that near the 
cooler wall moving down [I]. In a parallel flow, heat 
is transferred across the duct solely by conduction 
between the fluid layers, and the Row is said to be in 
the conduction regime. The experimental results of 
Eckert and Carlson [2] and Elder [3,4] confirmed the 
existence of the conduction regime when Gr is small. 
As Gr increases, however, the flow becomes unstable, 
first resulting in multicellular secondary Row patterns, 
and, as Gr increases further, turbulence. The stability 
of the conduction regime of natural convection has 
also been investigated [6-91. The findings demonstrate 
that for low Pr fluids, the dominant instability is 
insensitive to changes in Pr and is due to an unstable 
velocity distribution induced by thermal effects. 
Therefore, this is a thermal-shear instability, which 
obtains kinetic energy primarily by shear production. 
At large Pr, however, another instability becomes pre- 
eminent. This is called the thermal-buoyant instability 
since it obtains kinetic energy primarily from the 
buoyant force. In all of these studies, the wall tem- 
peratures are held constant, and the temperature 
difference between each wall induces a thermal strati- 

fication that drives fluid motion. The instability occurs 
when the temperature difference becomes larger than 
a threshold value. This corresponds to the critical 
Grashof number. However, the Pr effects on flow 
instabilities have never been systematically studied ; 
consequently, our understanding of the Pr effects is 
incomplete. 

There is a class of natural convection problems 
of practical importance which have not been studied 
previously, where the temperature of the fluid may 
continuously increase due to a constant heat flux con- 
dition on one of the surfaces. For example, a key 
problem in the storage of nuclear wastes is the deter- 
mination of the insulating effect of the annular air 
space surrounding a cylindrical nuclear waste canister 
embedded in a geologic repository. In this situation, 
heat will be transferred from the canister, through the 
insulating air space and into the surrounding rock. 
Heat may be transferred through the air space by 
conduction between the fluid layers, and by convec- 
tion. If the buoyancy induced motion of the air is 
laminar and parallel, heat will be transferred solely by 
conduction between the fluid layers, and the thermal 
resistance of the air gap will be relatively large. How- 
ever, if the motion of the air becomes unsteady and 
recirculating eddies appear, heat will also be trans- 
ferred through the air by convection due to the trans- 
verse mixing of the fluid. In this case, the thermal 
resistance of the air gap will be much smaller than 
in the case of pure conduction and the equilibrium 
temperature of the canister will be correspondingly 
lower. It has been estimated that the properties of the 
air gap can affect the final equilibrium temperature of 
the canister by as much as 350°F (177°C) [IO]. This 
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NOMENCLATURE 

A small amplitude of disturbance wave t time 
aI first Landau coefficient u, ti radial velocity 
B order-one amplitude function, (c,)“‘A L’, i; azimuthal velocity 
C complex disturbance wavespeed, c, + ic, w, w, 6 axial velocity 

9 gravitational acceleration K velocity scale, g/3/c(ro - ri)4/v2 
II convective heat transfer coefficient z axial coordinate. 
Gr Grashof number, Wl(r, -ri)/v 
R thermal conductivity 
k rate of increase of fluid temperature Greek symbols 
K curvature parameter for the annulus, tl axial wavenumber 

ri/(ro-I.i) thermal diffusivity 
NU Nusselt number ; thermal expansion coefficient 
n azimuthal wavenumber A distance from neutral curve, [Gr-GrJ 
p, P, rj pressure rl radial coordinate 
Pr Prandtl number, v/ai 0, 0, 6 dimensionless temperature 
ri. r, inner and outer radii of concentric v kinematic viscosity 

cylinders P density 
TW temperature of inner wall of annulus slow time scale 
TO initial inner wall temperature azimuthal coordinate. 

temperature is critical because it is the primary factor 
which determines the life span of the metal containers. 
To determine if heat will be transferred through the 
air gap by conduction or convection, the stability of 
the parallel motion must be investigated. As will be 
demonstrated, the criterion for flow instability will 
depend on the rate of heat addition to the air. There- 
fore, due to increased thermal resistance in the sur- 
rounding air gap, it is possible that a canister with a 
low rate of heat production, so that flow instability is 
not induced, could reach a higher equilibrium tem- 
perature than a canister with a heat flux high enough 
to induce instability. In this paper, this problem will 
be studied by considering the buoyancy-driven flow 
of a fluid in a vertical annulus with a constant heat-flux 
applied to the inner cylinder and the outer cylinder 
insulated. This models the early state of the waste 
storage system. The model may also be used to study 
the abnormal core condition of a nuclear reactor in a 
reflood phase. In this situation, the fuel rods form an 
array of cylindrical heating elements in the reactor 
vessel and the behavior of the flow near each indi- 
vidual fuel rod may be approximated as an annular 
region with the inner cylinder heated and the outer 
cylinder insulated. 

It is worthwhile to note that the problem studied in 
this paper is a limit of mixed-convection with zero 
mean flow. The linear-instability analysis of mixed- 
convection in a vertical annulus with the inner cylinder 
heated and the outer cylinder insulated [I I] found 
that the thermal instability may be a thermal-shear 
type, a thermal-buoyant type, or a Rayleigh-Taylor 
type, depending on the value of Pr and the vertical 
density stratification of the fluid. When the vertical 
temperature gradient is negative, a Rayleigh-Taylor 

type instability is possible since the vertical density 
stratification is unstable. In the stably stratified case, 
the Rayleigh-Taylor mode is not present, and the 
thermal instability will be either a thermal-shear mode 
at small Pr, or a thermal-buoyant mode at large Pr. 
The results showed that all the thermally induced 
instabilities exhibited very little Re dependence except 
at Re below 200, in qualitative agreement with the 
experimental observations of Maitra and Subba Raju 
v21. 

As will be discussed in Section 2, in the natural 
convection problem with a constant heat-flux con- 
dition on the inner cylinder, the mean system tem- 
perature will increase linearly with time. Sim- 
ultaneously, the heat will diffuse into the fluid from 
the heated cylinder resulting in a temperature dis- 
tribution on the cross-section. The temperature scale 
is then determined by considering the ratio of the two 
time scales associated with the wall heating rate and 
the diffusivity of the fluid. In this case, because of 
the finite geometry of the annulus, the temperature 
reaches a quasi-equilibrium in which the temperature 
of the fluid increases uniformly everywhere on the 
cross-section. By subtracting this continuously 
increasing temperature from the total temperature, a 
steady fluid temperature distribution is obtained, 
which induces fluid motion. The result of this scaling 
is that the rate of increase of fluid temperature shows 
up in the dimensionless energy equation as a constant 
source term. Consequently, the mathematical form of 
the scaled problem in this case is identical to that of 
a fluid in an annulus with the inner cylinder main- 
tained at a constant temperature and the outer cyl- 
inder insulated, with uniformly distributed heat 
sources in the fluid. Therefore, a comparison of data 
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from experiments of the current problem and those 
of uniform internal energy generation will bc related 
one-to-one. 

The dimensionless steady basic-state is a function 
of the radial coordinate only, and is independent of 
Gr and Pr, where Gr is the Grashof number defined 
in terms of the rate of increase of the fluid temperature. 
The analysis of the linear and nonlinear instability of 
the basic-state is described in Sections 2.3 and 2.4. 
Results of the instability analyses presented in Section 
3.1 demonstrate that two types of thermally induced 
instabilities are present. The first is pre-eminent at 
small Pr, and is the thermal-shear instdbihty. The 
second dominates at large Pr, and is the thermal- 
buoyant instability. The weakly nonlinear cal- 
culations indicate that both of the instabilities are 
supercritical under all conditions. With both insta- 
bilities, it is found that the first azimuthal mode is the 
most unstable when the curvature of the annulus is 
large, and the least stable mode becomes axisymmetric 
as the curvature decreases. The thermal-shear insta- 
bility is insensitive to changes in Pr. With the thermal- 
buoyant mode, however, a significant Pr dependence 
appears, and Gr, decreases as Pr increases. The 
increase in the mean Nusselt number due to the first 
transition is calculated using the results of the finite- 
amplitude analysis, and the results show that flow 
instability leads to a noticeable increase in the value 
of Nu due to transverse mixing of the fluid. In Section 
4, the balances ofdisturbance kinetic energy and ther- 
mal variance are considered. The results demonstrate 
the means by which the potential energy associated 
with the temperature fluctuations and the kinetic 
energy of the velocity fluctuations are exchanged. 

2. ANALYSIS 

2.1. Formulation 
The problem considered in this paper is that of the 

buoyancy-driven motion of a viscous fluid enclosed 
in a tall vertical cylindrical annulus as illustrated in 
Fig. 1. A uniform heat flux is applied .at the inner 
cylinder and the outer cylinder is insulated, and, as a 
consequence, the fluid mean temperature is increasing 
linearly with time. This temperature increase is given 
by 

k=prs 
di (1) 

where T, is the temperature of the inner wall, i the 
dimensional time and Pr the Prandtl number. The 
inclusion of the factor of Pr in this definition results 
in a more convenient form for the dimensionless 
governing equations, as will be explained below. 

As the inner cylinder is heated, the heat will diffuse 
into the fluid, creating a temperature distribution on 
the cross-section. Therefore, the temperature differ- 
ence between the cylinder wall and the fluid will be 
proportional to the ratio of time scales associated with 

h 

,q=o 

r. - ri << 1 

-ii-- 

FIG. I. Geometry and coordinates 

the fluid heating and the diffusion process. However, 
when the heat-flux is first initiated, the temperature 
distribution will be concentrated near the inner wall 
since the heat will require a finite period of time to 
conduct into the fluid. Since the geometry of the annu- 
lus is finite, a quasi-steady temperature distribution 
will eventually result in which the fluid temperature is 
increasing uniformly on the cross-section. The quasi- 
steady distribution will be established when the time 
is much larger than the conduction time, given by 
iC = (rO - ri) */oi, where oi is the fluid thermal diffusivity, 
and r, and ri are the outer and inner radii of the 
concentric annulus. A momentum diffusion time, 
equal to the conduction time divided by Pr, may also 
be defined. The temperature difference between the 
wall and the fluid will therefore be as follows : 

T -T k(r,--ri)* 

w - 
V 

where v is the kinematic viscosity. This leads to the 
following definition of a dimensionless temperature : 

@= CT,-T)v 
k(r, - ri)’ ’ (2) 

The mean value of 0 will be independent of time when 
the time is large compared with the conduction time 
since both T, and T are increasing at a rate pro- 
portional to k. However, at all times 0 may fluctuate 
about its mean value due to recirculating eddies that 
result from hydrodynamic instability. 

The thermal velocity scale for the problem is 
obtained by balancing the viscous shear force and the 
buoyant force in the vertical momentum equation. 
The result is 



38 B. B. ROGERS and L. S. YAO 

M,. g/YA T( r, - ri ) ’ 
s- v  

where g is the acceleration of gravity and /I is the 
thermal expansion coefficient. In this problem, 
however 

AT= T,-T. 

Therefore 

w, = .FW(ro -ri)4 
b ,I? . (3) 

The governing equations are the Navier-Stokes 
equations with the Boussinesq approximation in cyl- 
indrical coordinates. Using the scales defined above 
for velocity and temperature, in dimensionless form 
they become 

au u I a1 alI’ 
a+- ry+K+ rl+K (‘4 

p---t;__=0 (44 

(4b) 

I 

(‘1 (4c) 

(3 

where 

Dl=c+I.!? I 7 7 
L+d- 

a$ q+Kdr/+ (q+K)’ n’@ a?’ 

The above equations have been made dimensionless 
by scaling the lengths with the annular gap width, 
I’, - ri, time by (r, - r,)/ W,, velocities by W,, and press- 
ure by p W: where p is the density. The dimensionless 
radial coordinate is 11 = (r-ri)/(r,-r,), and a cur- 
vature parameter for the annulus has been defined as 
K = rJ(r,-ri). The parameters in the problem are the 
Grashof number, Gr = W,(r, -r,)/v, and the Prandtl 
number, Pr = V/L+. Therefore, in this problem Gr is a 
measure of the rate of heat addition to the fluid. 

Investigation of the energy equation (4e) shows 
that the time dependence of the temperature has been 
separated into two parts. The first accounts for tem- 
perature fluctuations about the mean and is given by 
atI/&. The second term represents the steady linear 

increase in fluid temperature and, after non- 
dimensionalization, is given by l/(Gr Pr). The 
inclusion of the factor of Pr in the definition of k given 
in equation (I) makes it possible to group this term 
with the conduction terms, as has been done in equa- 
tion (4e), resulting in a basic-state that does not 
depend on Pr. 

2.2. Bmic-stute 
The basic-state of the flow is a steady, fully 

developed parallel flow. If  we apply these conditions 
to equations (4a)-(4e), the basic-state will be a func- 
tion of the radial coordinate only, and the equations 
simplify to the following 

d’W, 

=+ 

I dW, 

q+K dr) 
(W 

d’@, I do, 
F+pp=-I 

rl+K drl 
(5b) 

where W, and 0, are the basic-state velocity and 
temperature, respectively. The boundary conditions 
on the basic-state are 

W”(0) = W,(l) = O”(0) = Oh(l) = 0. (SC) 

The term Gr(dP,/dz) is determined by the require- 
ment of global mass conservation 

S’ W,(q + K) dr) = 0. 
0 

Consequently, the basic-state is independent of GI 
and Pr, but will depend on the value of K. The effect 
of scaling the temperature by the rate of increase of the 
mean temperature may be clarified by investigation of 
the energy equation for the basic-state, equation (5b). 
The steady temperature increase shows up in this 
equation as the nonhomogeneous term, - I. There- 
fore, it appears as a uniform source term which modi- 
fies the dimensionless radial temperature distribution, 
oo. 

It is possible to solve the basic-state equations ana- 
lytically by the use of Bessel functions. However, the 
solution is tedious and it is found to be more con- 
venient to solve the equations numerically using a 
spectral/collocation technique, which was later used 
as part of the linear-instability analysis. Basic-state 
velocity and temperature profiles for K = 0.6 and IO 
are shown in Fig. 2. As these results show, the velocity 
profile for K = IO is almost symmetric about u = 0.5, 
while the profile for K = 0.6 is asymmetric. This is 
because K = IO corresponds to an annulus with a 
narrow gap, approaching a two-dimensional slot, 
while K = 0.6 represents an annulus with a much more 
pronounced curvature effect. Both of these velocity 
profiles contain inflection points, which suggests a 
potential for inviscid instability. 
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FE. 2. Basic-state velocity and temperature profiles. 

2.3. Linear-instabilitjl 
Linear-instability is studied by subtracting the 

basic-state from the governing equations, and neglect- 
ing the small nonlinear terms. Although this is a tran- 
sient heating problem, a normal mode form may be 
assumed for the disturbance because the temperature 
has been scaled by the rate of temperature increase. 
Therefore, the dependent variables are written as 
follows : 

qrl, 4, -, [) = qv) e’““-“‘+“‘+ (74 

v(q, 4, z, t) = L;(q) e”(‘-“‘)+‘“9 0) 

w(ff, C#J, z, 1) = W,(q) + C)(q) e”“-“‘)+“‘+ (7~) 

O(q, 4, I, t) = a,,(q) +6(q) e’““-“‘J+“‘” 6’4 

where a is the axial wavenumber, II the integer azi- 
muthal wavenumber, c the complex disturbance 
wavespeed and ‘ -‘denotes the small disturbance com- 
ponent of the dependent variable. The result is a set 
of linear ordinary differential equations given by 

” 
. ; 

zY+ __ + EL- +iaG, = 0 
q+K q+K 

I, 
icr Gr(W,,-c)li+Gr$‘-Li)l- 

(84 

rz’li 2infi 
+ (q+K)2 +a’ti+ F 

(u+K)- 
= 0 (8b) 

in Gr b I, 
V 

ice Gr(W,-c)i;+ __ -8”- ~ 
d 

___ 
rl+K q+K+ (q+K)’ 

n’P 2inli 
+ (q+K)2 +a20 -̂ (rl+K)2 = 0 (8~) 

icr Gr(W,-c)~~+GrliWb+icc Grfi-IC” 

-$K+&+a2~i~+6=0 (8d) 
icc Gr Pr( W, - c)6+ Gr Pr a@; - 6” 

To study finite-amplitude instability using a weakly 
nonlinear theory, the dependent variables are first 
separated into Fourier components of a disturbance 
wave predicted by linear-instability theory. The equa- 
tions governing the harmonic components are then 
solved using a perturbation expansion. There are 
different versions of weakly nonlinear theories that 
differ in the choice of a small parameter. Stuart [14] 
used the imaginary portion of the eigenvalue, c,, which 
is proportional to the disturbance amplification rate, 
to order the harmonic equations. Watson [I51 used 
the amplitude of the disturbance, A. Stewartson and 
Stuart [I61 used the distance from the neutral curve, 
A = Re-Re,. On the other hand, as was dem- 
onstrated in ref. [13], definite physical relationships 
exist between these parameters. The theories of refs. 
[ 14, 161 consider these relations in a consistent manner 
in the ordering of terms in the perturbation expan- 
sions. As a consequence, both theories involve expan- 
sions in terms of a single small parameter. ci or A, and 
are equally valid for both subcritical and supercritical 
flows. The theories are asymptotically identical in 
problems for which a neutral curve exists. (However, 
the theory of ref. [I41 may also be used in problems 
without a neutral curve as long as the magnitude of ci 
is small enough.) In nonisothermal flow, however, it 
has been observed that the expansion in A breaks 
down quickly because of the presence of branch-point 
type singularities in the perturbation series that links 
ci and A [ 131, and the expansion in terms of c, is more 
convenient. The expansion of ref. [13] represents a 
small modification to that of ref. [l4], in that the 
terms involving the difference between the basic-state 
velocity and the complex disturbance wavespeed, 
( W,-c), are considered to be of the order of one. 

-$K+&+~26=0 (8e) This is because the finite-amplitude instability dis- 

where the prime denotes differentiation with respect 
to 11. These equations form an eigenvalue problem 
for the complex disturbance wavespeed, c, with the 
disturbance being unstable for c, greater than zero. 

The equations for the basic-state and disturbance 
were discretized using a spectral Chebyshev col- 
location technique and the stability boundary was 
determined by a numerical search of the parameter 
space to determine the locus of points where c, = 0. 
Details of the numerical procedure may be found in 
ref. [S]. For particular values of the Prandtl number 
and curvature parameter, the point on the neutral 
curve at which the flow first becomes unstable defines 
the minimum critical Grashof number, GrC. 

2.4. Finite-utnplitucle instabi1it.v 
Linear-instability theory determines the point at 

which an infinitesimal disturbance becomes unstable, 
and predicts unbounded exponential growth of the 
disturbance. As the disturbance grows to finite size, 
however, nonlinear effects modify the growth rate 
predicted by linear theory. To study these effects, the 
weakly nonlinear instability theory developed in ref. 
[ 131 is applied to this problem. 
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turbance is expressed as a perturbation on the state 
of a finite amplification rate, c,. Consequently, the 
Landau constants can be uniquely determined with- 
out any specially designed normalization scheme. 

To explain the differences between the theories. con- 
sider the evolution of the amplitude of a supercritical 
instability with increasing Cr. as shown in Fig. 3. In 
Fig. 3, point C corresponds to the neutral point 01 
linear-instability, with Gr = Grc, and points D and E 
are at a supercritical value of Gr, GI > Gr,. In the 
theory of ref. [16], the expansion is anchored at the 
neutral curve, which is point C. All of the relevant 
functions are calculated at this point, and points C 
and D are linked by a perturbation expansion in A. 
In ref. [l3], on the other hand, the expansion is 
anchored at point D. and the relevant functions arc 
calculated at this point. An advantage in this 
approach is that the expansion in A between points C 
and D is eliminated. This also explains why the tern1 
( W,, -I’) is considered to be of the order of one in ref. 
[13], since c, is non-zero at point D. 

In this problem, the Fourier expansion of, for 
example, the axial velocity is written as follows : 

W(Il.$,Z,f) = W(tl,T)E”+ll’,(rl,T)E’ 

+ W2(t]. T)E’+ ” +C.C. (9) 

where E = exp (ia(r--c,r)+in4), a the axial wave- 
number corresponding to Gr,, and c, the wavespeed 
of the most unstable disturbance, given by the real 
portion of the eigenvalue from linear theory. In this 
problem, we will obtain only the lowest order cor- 
rection to the exponential growth predicted by linear 
theory, and inclusion of E-’ and higher harmonics is 
not necessary. 

The functions for the harmonic components are 
further decomposed by expanding in terms of the 
small parameter. Using the method of multiple scales 
with ([. T  = c,f) results in 

Gr 

FIG. 3. Illustration of supercritical bifurcation. 

(10) 

The following expansion of the E’ wave is consistent 

ll’,(tf,T) = C,“‘B(T)ll’,,,(~) 

+c; ‘BIBI?u~,,(r~)+O(c:‘?) (I 1) 

where B is an order-one amplitude function. The 
physical amplitude of the ii’,,) functions is therefore 
A = (c,)“‘B. The expansion for the E’ wave given by 
equation (12) leads to the following forms for the E” 
and E’ waves: 

W(&T) = W,,(rl)+(.,IB(T)l’W,(~)+O(c,‘) (12) 

W&l, 5) = C,(B(T))‘ll’20(i~) +o(C;). (13) 

Terms of the order of (c,)’ and smaller are not neccss- 
ary in the present analysis. Expansions of the other 
dependent variables corresponding to equations (9) 
through to (I 3) are given by similar expressions. The 
system of harmonic equations obtained by sub- 
stituting equation (9) through equation (I 3) into the 
governing equations may be solved sequentially in 
increasing powers of ci. At the order of (ci)” the only 
non-zero contribution is from the E” equations, which 
become those of the basic-state. Therefore, the func- 
tions IV,, and 0, are given by basic-state velocity and 
temperature distributions, respectively. At the order 
of (ci) I:?, the E’ equations become those of lincar- 
instability, and the other harmonic components arc 
zero. Consequently, the functions u,“, ulOr n’iO and 
O,,, are given by the eigenvectors of linear theory at 
the particular values of Gr, c( and tz being considered. 
At the order of c,, the equations for the E” and E’ 
waves produce nonhomogeneous equations for the 
mean-flow distortion functions, IV, and O,, and for 
the harmonic functions, zlZO, aZO, trZO and 02”. The 
nonhomogeneous terms in these equations involve 
only the functions ulO, o,“, w,~ and 0,0, which are 
known from lower-order analysis. Therefore, these 
equations may be easily solved, since the amplitude 
function factors out on each side of the equations 
and may be canceled. At the order of (c,) “I, the E ’ 
equations become nonhomogeneous equations with 
the left-hand sides consisting of the linear-instability 
operators operating on the functions u, ,, L’, ,, IV,, 
and O,,, and the right-hand sides consisting of terms 
proportional to dB/dr, B and BIBI’. The coefficients 
of the terms on the right-hand sides consist of the 
functions determined from the analysis at lower- 
orders. Since the homogeneous forms of the equations 
are exactly those of linear-instability theory, the inte- 
grability condition requires that the right-hand sides 
be orthogonal to the functions satisfying the homo- 
geneous adjoint problem. This condition leads to a 
Landau equation 

dB 
- = aB+a, BIBI’. 
dr 

The constant a, is the first Landau constant, and 



Natural convection 41 

is obtained through application of the integrability 
condition. Equation (14) represents a modification 
to the exponential growth or decay of a disturbance 
predicted by linear theory. If  the real part of a, is 
negative, a supercritical equilibrium amplitude is pre- 
dicted as ]A]’ = c,]B]’ = -ac,/(~,),, where the sub- 
script r denotes the real part. In the case of (c!,)~ 
positive. a subcritical instability is predicted with a 
threshold umplitudc of ]A]’ = ]s(c,/(cr,),l. 

In addition to the disturbance amplitude, the 
weakly nonlinear theory predicts the following order 
c, modulation to the wavespced due to the disturbance 
growth [ 141 

(15) 

whcrc cr is the wavespeed predicted by linear theory, 
and (u, ), is the imaginary portion of the first Landau 
constant. 

It is worthwhile to note that the Landau constants 
obtained by amplitude expansions [I 5, 17-191, which 
have been extensively developed because of ease of 
inclusion of higher-order terms, will not be the same 
as those obtained by the theory of ref. [l3]. This 
is because amplitude expansions ignore the ordering 
between c, and A. and some higher-order terms, pro- 
portional to c,, arc prematurely considered in the lower- 
order equations. This results in two serious problems 
with these techniques. The first is that the Landau 
constants are not determined uniquely, unless c, = 0. 
The second is that the mean-flow equations possess 
resonant solutions in the subcritical region [20]. The 
amplitude expansion theories have been unsuccessful 
in overcoming these problems. On the other hand, in 
the equilibrium amplitude method [l7]. d]A]‘/dt is set 
equal to zero at the outset, and only equilibrium states 
are sought. With this procedure. the analysis is con- 
siderably simplified, and the problems of non- 
uniqueness of the Landau constants and mean-flow 
resonance are eliminated in the lowest-order per- 
turbation equations. In fact, to the lowest order, the 
method of ref. [I71 produces the same result as the 
consistent theory of ref. [I 31. However, if higher-order 
terms are considered the results will differ since the 
terms proportional to c, have been identically set to 
zero in the equilibrium amplitude approach rather 
than deferred to higher order, as they are in ref. [13], 
and the problem of nonuniqueness of Landau con- 
stants persists at higher orders. 

3. RESULTS 

3.1. Results q/instability calculutions 
The parameters in this problem are Gr, Pr and K. 

At fixed Pr and K, the flow becomes unstable as 
Gr increases, and a complete linear-instability map is 
obtained by considering the effect of both Pr and K 
on Gr,. In this paper, the effect of Pr on Gv, is studied 
at two values of K: K = 0.6 and IO. In addition, the 

effect of K on Gr, is analyzed at fixed Prandtl numbers 
of 0.01 and IO. As will be discussed in more detail 
below. these choices of Pr and K provide a complete 
picture of the instabilities present in this problem. It 
is worthwhile to point out that it is known from kinetic 
theory that ideal gases will have Prandtl numbers 
greater than 0.4. while most common liquids have 
Prandtl numbers greater than I. The exceptions are 
liquid metals, whose Prandtl numbers are less than 
0.1. Consequently, no common fluids will have 
Prdndtl numbers in the intermediate range. However, 
data arc presented for a continuous range of Pr to 
clarify the results of the instability calculations. 

Figure 4 is a plot of Gr, vs Pr for K = 0.6 and IO. 
The results in Fig. 4 clearly indicate that two types of 
instabilities are present. At small values of Pr the 
dominant instability is insensitive to changes in Pr in 
both geometries. On the other hand, at larger values 
of Pr, another instability appears which is strongly 
dependent on Pr, with Gr, decreasing with increasing 
Pr. As will be proven in Section 4, the low Pr insta- 
bility is hydrodynamic in origin, resulting from an 
unstable velocity profile induced by thermal elfccts, 
and is therefore a thermal-shear instability, since it 
obtains most of its kinetic energy through shear pro- 
duction. The large Pr instability is fundamentally 
different from the thermal-shear instability since it 
obtains most of its kinetic energy from buoyant pro- 
duction, and is called the thermal-buoyant instability. 

At K = 0.6, the thermal-shear instability is domi- 
nant for Pr less than 0.4. The value of Gr, initially 
decreases rapidly as Pr increases for the thermal- 
buoyant mode, but at large values of Pr, GI; reaches 
a constant value of about G,; = 700. Therefore, in 
this geometry, if the fluid is a liquid metal, the most 
unstable linear disturbance will be the thermal-shear 
mode, while other common fluids will become 
unstable to the thermal-buoyant mode. On the other 
hand, with K = IO, the thermal-buoyant mode is not 
pre-eminent until Pr is larger than 7. This shows that 
as K increases, resulting in a smaller curvature effect, 
the minimum Prandtl number for which the thermal- 
buoyant instability is dominant increases. It is worth- 
while to point out that Pr = 7 is within the range of 
variation of Pr for many common fluids. For example, 
with water Pr is greater than 7 for temperatures below 
18°C and less for higher temperatures. Consequently, 
as the water temperature increases, the most linearly 
unstable mode changes from the thermal-buoyant 
mode at low temperatures to the thermal-shear mode 
at higher temperatures. Since the critical value of Gt 
is less for the thermal-buoyant mode than it is for the 
thermal-shear mode, a linearly unstable flow of water 
at Gr = 10000, for example, will be stabilized due to 
fluid property variations as the water temperature 
increases. 

Figure 5 is a plot of Gr, vs K at Pr = 0.01 and IO, 
the smaller Prandtl number being representative of the 
thermal-shear instability and the larger of the thermal- 
buoyant instability. For the thermal-shear instability, 
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II = I is the dominant aziinuthal mode for K less than 
0.7. with II = 0 the most unstable mode for K larger 
than this value. Gr, is smallest at small values of K 
and increases with increasing K, approaching a value 
of Gr, = I5 200 at large K. With the thermal-buoyant 
instability, II = I is the dominant mode for values of 
K less than 0.9. Similar to the thermal-shear mode, 
Gr, increases with increasing K, and at large values of 
K approaches a constant value of GI, = 6100. In 
this problem. in the limit of a two-dimensional slot 
Squire’s theorem may be proven. Therefore. the fact 
that II = 0 becomes the dominant mode as K increases 
is expected. 

The first Landau constant has been calculated at 

15.000 

Gr 

5,000 

0.1 1.0 10.0 100 

K 

FIG. 5. Critical Grashof number vs K for Pr = 0.01 and IO. 

100 

points on the curves shown in Figs. 4 and 5, and the 
results of the calculations al four poinls are given in 
Table I. As the results show, these instabilities are all 
superficial. In fact, in a search of the entire (Pr, K. 
II, a) space at the critical values of Gr, revealed no 
subcritical instabilities. Therefore, in all cases, at low 
heating rates, the fluid motion will be steady and 
parallel, and will remain in this condition until the 
flow becomes linearly unstable, since there are no 
subcritically unstable states. In this condition. heat 
will be transferred across the duct solely by conduc- 
tion. As the rate of heating increases, the flow will 
undergo a transition to multicellular convection, 
which will begin when the critical Grashof number for 
linear-instability is exceeded. In the neighborhood of 
Gr,, an unstable disturbance will grow until it reaches 
an equilibrium amplitude equal to (-acJ(u,),) Ii’. 

The results in Figs. 4 and 5 have demonstrated that 
there are two types of instabilities for this flow. and 
both instabilities become linearly unstable to the first 
azimuthal mode at small K, and the axisymmetric 
mode at large K. For all values of Pr, at K = 0.6, 
the most unstable azimuthal mode is 17 = 1, and at 
K = IO, tz = 0. Additionally, at all values of K, the 
thermal-shear mode is dominant at Pr = 0.01, and the 
thermal-btioyant mode dominates at Pr = IO. There- 
fore, the effects of Prandtl number at fixed values of 
K = 0.6 and 10 presented on Fig. 4, and the effects of 
K at fixed values of Pr = 0.01 and 10 shown in Fig. 5 
provide a map of the linear-instability behavior for 
both axisymmetric and nonaxisymmetric thermal- 
shear and thermal-buoyant instabilities for this flow. 
In addition, the weakly nonlinear results have shown 
that these instabilities are all supercritical. 

Figure 6 illustrates the effect of Pr on tl and c, for 
K = 0.6 and IO. With the thermal-shear instability the 
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Table I. Landau constants at the neutral curves for thermal-shear and thcrmal- 
buoyant instabilities. TS denotes the thermal-shear mode while TB denotes 

the thermal-buoyant mode 

Pr K GI; Type a, II (; “ I 

0.01 0.6 13900 TS 2.5 I 0.19x IO-’ -1388f 185li 
0.01 IO 15140 TS 2.13 0 0.42 x 10-l - 168X + 602i 

IO 0.6 I522 TB 0.43 I -0.38 x IO-’ -46.9- I4.3i 
IO IO 5526 TB 1.58 0 0.43 x IO ’ -6821+ 1258Oi 

variation of E with Pr is small for both gcomctries. results with the basic-state velocity profiles shown in 
With the thermal-buoyant instability at K = 0.6. 2 Fig. 2 reveals that in both geometries there arc two 
also does not change significantly with Pr. In this cast. critical layers, since the value of cr is less than the maxi- 
however, the value of z is much smaller than that mum base flow velocity. With the thermal-buoyant 
which occurs with the thermal-shear instability, and instability, at K = 0.6. the wavespeed is negative, and 
the disturbances associated with the thermal-buoyant the instability will appear as a disturbance moving 
mode will consist of waves that are approximately 5.5 down the annulus rather than up as in the other casts. 
times longer than those associated with the thermal- As will be clarified in the discussion of Fig. 7, this is 
shear mode. In contrast to the results at K = 0.6, at a general behavior of the nonaxisymmetric thermal- 
K = IO. a increases substantially with increasing PI buoyant instability for this problem. In the case of 
for the thermal-buoyant mode. In this geometry as K = IO. however, cI is positive for this mode. The 
well, however, the length of the waves associated with variation of or with Pr is also small in both geometries 
the thermal-buoyant disturbance are longer than with the thermal-buoyant instability, but, in contrast 
those associated with the thermal-shear disturbance. to the thermal-shear instability, the wavespceds are 
For example, at a value of Pr = 7, which is the point at greater than the maximum (or less than the minimum) 
which the thermal-buoyant mode becomes dominant base flow velocity. and no critical layers will be 
with increasing Pr, the length of the thermal-buoyant present. Therefore. the wavespeeds of the thermal- 
wave will be 2.8 times that of the thermal-shear wave. buoyant disturbances will be larger than those of the 

The plots of c, vs Pr. also given in Fig. 6, show that thermal-shear disturbances. 
the value of cr is nearly constant for the thermal-shear As Fig. 7 illustrates, with the thermal-shear insta- 
instability for both geometries. Comparison of the bility, 2 initially increases with increasing K, but 
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FIG. 6. Axial wavenumbers and wavespeeds vs Pr for K = 0.6 and IO. The subscript B denotes the thermal- 
buoyant mode and the subscript s denotes the thermal-shear mode. 
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reaches a constant value of x = 2.8 as a two-dimen- 
sional channel is approximated at large K. The plot 
of c( vs K for this instability is continuous, even at 
K = 0.7, where the most unstable azimuthal mode 
changes from n = 1 to 0. In contrast to the thermal- 
shear mode, with the thermal-buoyant instability the 
plot of CI vs K is discontinuous, with a jump from 
tl = 0.35 to 2.0 at K = 0.9, which is the point that 
the least stable azimuthal wavenumber changes from 
n = 1 to 0. Consequently, the wavelength of the non- 
axisymmetric thermal-buoyant disturbances at small 
K will be much longer than the axisymmetric dis- 
turbances which occur at larger K. 

The disturbance wavespeed for the thermal-shear 
disturbance, shown in Fig. 7, decreases with increasing 
K, and approaches zero at large values of K. There- 
fore, in the limit of a two-dimensional channel, the 
most unstable infinitesimal thermal-shear disturbance 
will consist of stationary waves. As with the axial 
wavenumber, the plot of c, vs K is continuous for this 
instability, even near K = 0.7, where the most unstable 
azimuthal mode changes from n = 1 to 0. With the 
thermal-buoyant mode, at small K the magnitude 
of c, decreases with increasing K, but still remains 
negative. At K = 0.9, however, the most unstable azi- 
muthal disturbance changes from n = 1 to 0 and there 
is a jump in the value of the wavespeed, with c, becom- 
ing positive for K = 0.9 and larger. Therefore, when 
the first azimuthal mode of the thermal-buoyant insta- 
bility is the least stable mode, the disturbance will 
consist of waves which travel down the channel, but 
when the thermal-buoyant mode is axisymmetric, the 
disturbances will travel up the annulus. At large K, in 
the limit of a two-dimensional channel, the thermal- 
buoyant instability will continue to exist as traveling 
waves, in contrast to the stationary waves of the 
thermal-shear instability. 

The finite-amplitude results in Table 1, along with 
equation (1.5) show that, for the thermal-shear insta- 
bility in the supercritical region (ci > 0 and (a,), c 0) 

the disturbance wavespeed will decrease with increas- 
ing c,. However, in the limit of a two-dimensional 
channel at large values of K, the weakly nonlinear 
theory does not predict that the finite-amplitude dis- 
turbances will remain stationary, but rather they will 
drift slowly down the channel as L’, increases. With 
the thermal-buoyant mode at K = IO, the disturbance 
wavespeed will also decrease in the supercritical region 
as the disturbance grows. At K = 0.6, on the other 
hand, the value of (N,) is negative, predicting an 
increase in the numerical value of the wavespeed. 
However, in this case the wavespeed predicted by 
linear theory is initially negative. Therefore, this result 
also predicts that the magnitude of the disturbance 
wavespeed will decrease as ci increases. 

3.2. Heor tr.atwjiit 
The average Nusselt number of the flow is defined 

as follows : 

Nu = &” - 1.1) -----z 
R I-’ (16) 

J WI + K) drl 0 

where h is the convective heat transfer coefficient 
based on the temperature difference between the 
heated wall and the mean fluid temperature and R is 
the fluid thermal conductivity. A plot of the basic- 
state Nusselt number (Nu,) vs the annulus curvature 
parameter, K, is given in Fig. 8. As may be verified 
from equations (5b) and (16) in the large K limit, 
Nu, reaches an asymptotic value of NM, = 3. As the 
curvature parameter decreases, corresponding to an 
increase in the annulus curvature, Nils increases, and 
reaches a value of 5.8 at K = 0.1. 

After the equilibrium amplitude of the disturbance 
has been obtained, the distortion of the mean-flow 
may be determined from equation (12). These results 
can be used to predict the increase in the average 

FIG. 8. Basic-state Nusselt number vs K. 
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FIG. 9. Increase in Nu due to flow instability for (a) thermal-shear and (b) thermal-buoyant instabilities. 

Nusselt number due to the flow instability through 
the use of equation (16). These calculations are shown 
in Figs. 9(a) and (b) for both the thermal-shear and 
thermal-buoyant instabilities at K = 10. As the results 
show, the Nusselt numbers will increase noticeably 
due to flow bifurcation. The increase in Nu predicted 
by the finite-amplitude theory is, for both instabilities, 
about 5%. However, as stated in ref. [IO], the observed 
increase in heat transfer is substantially larger than 
this for the problem of an air gap surrounding a 
nuclear waste canister. Therefore, as Gr increases fur- 
ther, the periodic flow itself will become unstable and 
undergo additional transitions, leading to increased 
transverse mixing of the fluid, and, consequently, fur- 
ther increases in the Nusselt number. 

4. ENERGY TRANSFER 

The kinetic energy balance of the E' wave for 
an axisymmetric disturbance yields the following 
equation 

-~<wu,)2+wt~,)2) = Es+Eb+Ed. (17) 

The balance of thermal variance yields 

- &<W,)‘) = Et+&. (18) 

In these equations, the symbols ( ) imply integration 
over the volume of the disturbance wave, Wand 0 are 
the mean-flow velocity and temperature distributions, 
respectively, and U, W, = zi i ~1, + u , d, , with the tilde 
(-) denoting the complex conjugate. The terms IV,, 
u,,f?,, WandOaregivenbyequations(II)and(l2). 
The terms on the right-hand side of equation (17) 
represent an equilibrium balance of production and 

dissipation of disturbance kinetic energy when the 
disturbance amplitude has reached its equilibrium 
value. The first term, given the symbol Es in equation 
(l7), represents work done by the Reynolds-stress/ 
mean-flow strain-rate interaction, and is the shear 
production of kinetic energy. The second term, given 
the symbol Eb in equation (17) represents the pro- 
duction of energy through work done by the fluc- 
tuating body force, and is the buoyant production of 
kinetic energy. The last term in equation (I 7) given 
the symbol Ed, represents the dissipation of dis- 
turbance kinetic energy by viscous action. In equation 
(18), the first term, given the symbol E,, represents 
the gradient production of thermal variance, and the 
second term, EC, represents the dissipation of the ther- 
mal fluctuations due to conduction. 

Components of the disturbance heat flux occur in 
the production terms of both the disturbance kinetic 
energy and thermal variance. Investigation of equa- 
tions (17) and (18) shows that the axial disturbance 
heat flux, w,O,, appears in the buoyant production 
term in the kinetic energy balance while the radial 
disturbance heat flux, u,O,, appears in the gradient 
production term for thermal variance. This illustrates 
that the potential energy associated with the tem- 
perature fluctuations and the kinetic energy of velocity 
fluctuations is exchanged through the buoyant force. 
However, in this problem equations (17) and (18) 
are not directly coupled because there are no mean 
gradients in the direction of the buoyant force. The 
energy transfer may be further clarified, however, by 
considering the balances for ri: and 15; independently 
as given below 
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Equations (19) and (20) produce the kinetic energy 
balance given by equation (17) when they are added 
since the pressure terms will be equal and opposite. 
However, these pressure terms account for kinetic 
energy that is transferred between the axial and radial 
components, and are called pressure scrambling 
terms. Equations (19) and (20) illustrate that the vel- 
ocity fluctuations are initiated in the axial direction by 
both shear and buoyant production, while the radial 
velocity fluctuations are produced solely through 
pressure scrambling. Therefore, this term is positive 
in equation (19) and negative in equation (20), and a 
portion of the axial kinetic energy is transmitted to 
the radial component. Since the radial velocity fluc- 

tuations appear in the gradient production term for 
thermal variance in equation (18), they enhance the 
production of the temperature fluctuations. The tem- 
perature fluctuations in turn increase the production 
of axial kinetic energy through the buoyant pro- 
duction term in equation (17). 

The integrals in equation (17) have been evaluated 
using the results obtained by the earlier analysis, and 
the results are plotted vs Pr and K in Figs. 10 and I 1. 
Finite-amplitude calculations have shown that the 
growth of the disturbance does not significantly alter 
the relative amounts of kinetic energy contained in 
each term. Therefore, the results in Figs. IO and 1 I 
are those at the neutral curve, and are representative 

K 

FIG. 1 I. E, and Eb vs K for thermal-shear (Pr = 0.01) and thermal-buoyant (Pr = IO) instabilities. 



Natural convection 47 

of the finite-amplitude disturbances as well. Investi- 
gation of Fig. 10 reveals that, with the thermal-shear 
instability, as Pr increases. the amount of energy pro- 
duced by the buoyant mechanism also increases, but 
the shear mechanism remains dominant. The results 
also illustrate that the buoyant mechanism always 
dominates the production of disturbance kinetic 
energy for the thermal-buoyant instability, but as Pr 

decreases, shear production becomes more significant. 

5. CONCLUSIONS 

The analysis of natural convection in a tall vertical 
annulus with the inner cylinder heated and the outer 
cylinder insulated has shown that two types of super- 
critical instabilities exist in this flow. The parameter 
that determines which will be dominant in a particular 
geometry is the Prandtl number. The analysis of the 
energy transfer patterns of these instabilities has dem- 
onstrated that the low Pr instability is driven primarily 
by shear production, and is the thermal-shear insta- 
bility. The high Pr instability is driven primarily by 
buoyant production, and is the thermal-buoyant 
instability. The critical value of the Grashof number 
does not depend strongly on Pr for the thermal-shear 
instability, but with the thermal-buoyant mode, GI; 

decreases with increasing Pr. In the intermediate PI 

range, the thermal-shear and thermal-buoyant insta- 
bilities are identified by characteristic wavenumbers 
and wavespeeds, with the thermal-buoyant dis- 
turbances consisting of longer, faster waves than those 
of the thermal-shear mode. However, with both insta- 
bilities, the first azimuthal mode is the least stable 
mode when the curvature of the annulus is large, and 
the disturbances become axisymmetric as the cur- 
vature decreases. Therefore, when the curvature of the 
annulus is large, corresponding to small values of K, 
the secondary flow will consist of two counter-rotating 
spirals, as opposed to the single traveling wave which 
occurs when the curvature is small. 
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